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Abstract – In dense 3D reconstruction work for monocular simultaneous localization
and mapping (SLAM), to present coherence and prevent abrupt change in reconstructed
surfaces, we normally model the contextual constraint of physical properties in a neigh-
bourhood of space as a certain prior smoothness term concisely into the optimization pro-
cess. In our work, we first had a careful discussion about the trade-off between precision
and accuracy for different prior smoothness terms and how these affected the optimization
process of the depth map based on photo consistency measurement. We then presented a
method which uses depth information of tracked feature points as priors in the optimiza-
tion process. Finally, we verified effectiveness of our method by conducting quantitative
evaluation experiments in a simulated environment. We also qualitative evaluation in a
real environment. We confirmed that feature prior information can improve the accuracy
of reconstructed structure at the strong texture area.
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1 Introduction

In computer vision, visual SLAM based on a monoc-

ular RGB camera, which means tracking a hand-

held camera and simultaneously recovering the three-

dimensional structure of the environment in real-

time is a challenging and promising direction and in-

creasingly popular. In recent years, dense approaches

to this problem which uses information from whole

input images have achieved compelling results. Be-

cause these methods are very different from feature-

based approaches, it allows a complementary bind-

ing, trying to exploit the advantage of both ways.

Feature-Based Method: The standard approach

is to extract a sparse set of salient image features

in each image match them in successive frames us-

ing invariant feature descriptors. Then robustly re-

cover both camera motion and structure using epipo-

lar geometry. Finally, refine the pose and structure

through reprojection error minimization. Lots of al-

gorithm such as [2, 3] follows this procedure. Feature

based methods are usually not expensive at compu-

tational cost and they can achieve robust real-time

camera tracking under high quality corresponding

pixels pairs. A sparse point cloud structure usually
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can be recovered from the tracked feature points.

Direct Method: Alternatively, due to increased

computational capabilities, recently monocular di-

rect visual odometry algorithms have been proposed.

Direct methods use information from every whole in-

put frame, recovering depth value for each pixel in a

selected key-frame. In [1], relatively expensive opti-

mization methods for accurate and fully dense depth

maps are realized parallelizedly on GPGPU hard-

ware. Also some researches turned to a semi-dense

depth filtering formulation, such as [5, 4], which greatly

reduces computational complexity, allowing real-time

performance on a CPU. Direct methods are able to

reconstruct more surface detail information under

statistical framework. Prior knowledge or assump-

tion will be crucial to the result quality.

In this paper, we developed a method of dense 3D

reconstruction based on the state of the art algo-

rithm [1] combined with feature-based SLAM. The

algorithm of [1] uses passive sensors only so it natu-

rally suffers from ambiguity problem, and sometimes

obvious and severe in its reconstruction result for

smooth and highly textured surface areas. In [1],

theHypothesis that depth discontinuities often coin-

cide with image edges caused those areas appeared to
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be potholes-like or stairs-like, obtaining unnecessary

and disturbing depth discontinuity. In our research,

we carefully analyzed the cause of this phenomenon

and related ambiguity problem and come up with

a modified regularization process, aiming at recon-

structing highly textured surface as a whole smooth

block correctly, evaluated by brief experiments in

simulated and real environment.

2 Dense Depth Map Construction Using

Feature Prior Information

2.1 Cost Volume

The data structure of cost volume is designed as a 3

dimensional matrix to represent the disparity space,

which can be simply explained as an array of im-

age size matrices linearly lying on the inverse depth

direction, also called disparity. So the cost volume

is a R × C × D cube matrix, where R × C is the

image size, D is the sampling number along mini-

mum inverse depth ξmin to maximum inverse depth

ξmax in the camera view field. A reference frame r

consists of a reference image Ir with pose Trw and

data cost volume Cr(u, d) collected from the related

input frames set I. The cost volume is for storing

the intensity difference of each pixel in the reference

frame r with any existing pixel lying along its epipo-

lar line in other input frames from set I. For each

pixel u, a row Cr(d) along the depth direction in

the cost volume is computed by projecting a pixel in

the reference image where the volume is built, into

each of the overlapping images and summing up some

similarity measurement, for instance, Huber norm of

individual photometric errors ρ(Im, d). For a whole

reference frame, the cost sums up to

ρr(Im,u, d) = Ir(u)− Im(π(KTmrπ
1(u, d))) (1)

Cr(u, d) =
1

|I|
||ρ(Im,u, d)||,m ∈ I (2)

The reprojection process is π(KTmrπ
1(u, d)), where

Tmr is the relative transform matrix between camera

position of input frame and the reference frame, K

is the intrinsic parameter of the camera and π is for

dehomogenization. In this paper it is implemented

in a 4×4 projection matrix manner where the inverse

depth sampling can be integrated in the 3rd row.

2.2 Exploit Feature Points Depth

We first exam the ambiguity from the view of cost

volume method to see how the defect brought by

Fig.1 Camera sweeping over a two color plane

Fig.2 Cr(d) of pixel A and pixel B

Hypothesis at section 1 happens. First we suppose a

plane separated into two regions with different color.

The cost volume method require camera to sweep

the scene along a narrow baseline so we imagine the

camera is moving from the current position to left

or right as figure 1. Figure 2 shows Cr(d) of pixels

in different color regions when camera moving along

the direction of the arrow in figure 1.

2.3 Reconstruction Fixing

This section is about how to fix the accumulated

ρ(Im, d) for feature point, to support the whole opti-

mization process better. The confident depth of fea-

ture points is from camera tracking. After perform-

ing bundle adjustment integrated with RANSAC, we

can track a series of feature points with an relative

accurate estimation of their 3D position. We apply

the 4 × 4 projection matrix mentioned in previous

section on these feature points, projecting them to

the volume. Then compare the minimal in the col-
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Fig.3 Idea of fixing the confident feature point
depth. Left: original Cr(d). Right: Cr(d)
with given minimal.

umn of corresponding pixels and the depth interval

where this feature point falls. The general spirit of

this fixing manipulation is described as figure 3. In

detail, for different situations we will fix this column

of accumulated ρ(Im, d) respectively.

1. If the plot of ρ(Im, d) at targeted position has

a minimal which is less than 50% of cost at all

the other non-adjacent depth, and this minimal

is adjacent to or same with the depth interval

where this feature point falls , we do not modify

this column.

2. If the plot of ρ(Im, d) has a minimal which is

less than 50% of cost at all the other depth,

but it is not adjacent to or same with the depth

interval where this feature points falls, we will

put the cost at the depth interval where this

feature points falls and its adjacent depths to

the same value as the minimal.

3. If the plot of ρ(Im, d) does not have a mini-

mal which is less than 50% of cost at all the

other depth, we replace the whole plot into a

new curve. The basic spirit of this operation is

illustrated as following graph, which the valley

part is parabolic.

3 Experiment and Result

3.1 Simulation Analysis

We use Matlab as our simulation experiment en-

vironment. The test data set is new Tsukuba stereo

data set containing a CG-generated video sequence

of 1800 frames with 4 different illumination condi-

tions. The camera trajectory and depth maps for

each frames is also provided as ground truth. We ap-

plied cost column modification method and anisotropic

regularization term based on Hypothesis at section

Fig.4 Recovered depth map. Left: cost column fix-
ing; Right: anisotropic regularization

Fig.5 Overall error of depth estimation comparison
within 380 iteration, green:cost column fixing,
red:anisotropic regularization term

1 simulated environment to confirm the implement

and compare the reconstruction results. Figure 4

shows the recovered depth maps for each method.

From figure 5 we can see that the optimization pro-

cesses for two methods start from a same error level

about average 16 inverse depth sample intervals and

after 380 iterative steps, our method using feature

depth as prior information ended up at smaller er-

ror level at average 8 inverse depth sample intervals

compared with average 9 intervals of anisotropic reg-

ularization term method. Figure 6 shows that in the

typical area where is smoothed and highly textured,

average depth error drops from 25 inverse depth sam-

pling intervals to 9 compared with 14 for anisotropic

regularization method after 380 steps iteration .

3.2 Real Environment

The test scene is under daylight illumination, con-

sists of a check board, a textured mug, and a blue

bendo cloth for background. Material for the mug

is very smooth and slightly reflective and specular.

Check board of course is the most textured object in

this scene, so we can compare how different meth-
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Fig.7 Results in real environment. From left to right:isotropic prior smoothness without fixed
feature points depths(most over-fitting);isotropic prior smoothness with fixed feature
points depths(proposed method);anisotropic prior smoothness based on Hypothesis at
section 1

Fig.6 Plot of average error of depth estimation
for selected highly textured smooth area
within 380 iteration, green:cost column fixing,
red:anisotropic regularization term

ods perform on this area mainly focusing on whether

they generate stair effects on recovered depth map.

The reconstruction of the inner surface of the mug

is also where the ambiguity of structure from motion

method happens. So we will also compare and an-

alyze the experiment result on these places. From

figure 7 we can see the panel-like effect brought by

anisotropic regularization term on check board area

due to its rich texture and in the result using nei-

ther weighted regularization nor depth fixing, the

boundary of check board is not clear. We achieved

a good compromise between details and over fittings

by using feature points depth fixing on isotropic prior

smoothness.

4 Conclusion

The proposed method, which uses tracked feature

points depth information to modify feature points

fixing cost column in the depth map estimation op-

timization process, was tested in both simulation

environment and real environment. In the simu-

lated test we find that our method is slightly lower

at the total error with true depth value accumu-

lated over whole frame, and this advantage becomes

more clear when compared within highly textured

smooth area than the edge based anisotropic regu-

larization method. In the real environment test the

proposed method achieves a good compromise be-

tween details and over fittings, while avoid the effect

brought by original weighted regularization method.

For future research direction, finding proper hypoth-

esis for occlusion problem fitting current optimiza-

tion algorithm is always promising.
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mers; LSD-SLAM: Large-Scale Direct Monocular
SLAM; In Proceedings of European Conference on
Computer Vision, pp. 834-849, 2014.

IPSJ SIG Technical Report

ⓒ 2015 Information Processing Society of Japan 4

Vol.2015-CVIM-195 No.63
2015/1/23


